传输线模型

目录·历史
·传输线与电线
·四终端模型
·电报员公式
·传输线的输入阻抗
·电传输线的实际类型
·参考书目
·外部文章及更多读物




   传输线是一种能构成从一处到另一处的全部或者部分路径并用于能量传输导向的材料媒质或者结构,例如电磁波或者声学波,以及电能传输。 传输线的组成包括电线、同轴电缆、介电板、光纤、电线、以及波导.



历史

电传输线行为的数学分析源于James Clerk Maxwell、Lord Kelvin和Oliver Heaviside的工作。1855年开尔文爵士建立了一个关于海底电缆电流的微分模型。[1]

传输线与电线

在许多电子线路中,连接各器件的电线的长度是基本可以被忽略的。因为在电线各点同一时刻的电压可以认为是相同的。但是,当电压的变化和信号沿电线传播下去的时间可以比拟时,电线的长度变得重要了,这时电线就必须被处理成传输线。

四终端模型

为了分析的需要,传输线可以用一个含有两个端口的电网(四终端电网)进行建模,如下图所示:


电报员公式


传输线的输入阻抗


电传输线的实际类型


同轴电缆

微波传输带
<dl>
<dd>Main article: 微波传输带</dd>
</dl>
微波传输带电路使用的是一个平行于地面的平薄导体

微波带状线
<dl>
<dd>Main article&#160;: 微波带状线</dd>
</dl>
微波带状线电路使用的是一条夹于两个平行地面之间的金属平带,基底的绝缘材料构成了电介体。带宽、基底厚度和基底的相对介电常数决定了传输线带的阻抗特性。

平衡传输线

勒谢尔线
<dl>
<dd>
主条目:Lecher lines
</dd>
</dl>
勒谢尔线是一类能够用于共振生成电路分米波(UHF)的平行导体。它们被用在工作于短波(HF)/超短波(VHF)之间的lumped组件, and 分米波(UHF)/厘米波(SHF).

参考书目

Part of this article was derived from Federal Standard 1037C.

^ Ernst Weber and Frederik Nebeker, The Evolution of Electrical Engineering, IEEE Press, Piscataway, New Jersey USA, 1994 ISBN 0-7803-1066-7


Steinmetz, Charles Proteus, "The Natural Period of a Transmission Line and the Frequency of lightning Discharge Therefrom". The Electrical world. August 27 1898. Pg. 203 - 205.
Electromagnetism 2nd ed., Grant, I.S., and Phillips, W.R., pub John Wiley, ISBN 0-471-92712-0
Fundamentals Of Applied Electromagnetics 2004 media edition., Ulaby, F.T., pub Prentice Hall, ISBN 0-13-185089-X
Radiocommunication handbook, page 20, chaper 17, RSGB, ISBN 0-900612-58-4
Naredo, J.L., A.C. Soudack, and J.R. Marti, Simulation of transients on transmission lines with corona via the method of characteristics. Generation, Transmission and Distribution, IEE Proceedings. Vol. 142.1, Inst. de Investigaciones Electr., Morelos, Jan 1995. ISSN 1350-2360


外部文章及更多读物


Annual Dinner of the Institute at the Waldorf-Astoria. Transactions of the American Institute of Electrical Engineers, New York, January 13, 1902. (Honoring of Guglielmo Marconi, January 13 1902)
Avant! software, Using Transmission Line Equations and Parameters. Star-Hspice Manual, June 2001.
Cornille, P, On the propagation of inhomogeneous waves. J. Phys. D: Appl. Phys. 23, February 14 1990. (Concept of inhomogeneous waves propagation — Show the importance of the telegrapher&#39;&#39;s equation with Heaviside&#39;&#39;s condition.)
Farlow, S.J., Partial differential equations for scientists and engineers. J. Wiley and Sons, 1982, p. 126. ISBN 0-471-08639-8.
Han, Hsiu C., Transmission-Line Equations. EE 313 Electromagnetic Fields and Waves.
Kupershmidt, Boris A., Remarks on random evolutions in Hamiltonian representation. Math-ph/9810020. J. Nonlinear Math. Phys. 5 (1998), no. 4, 383-395.
Pupin, M., 美国专利 1541845, Electrical wave transmission.
Transmission line matching. EIE403: High Frequency Circuit Design. Department of Electronic and Information Engineering, Hong Kong Polytechnic University. (PDF format)
Wilson, B. (2005, October 19). Telegrapher&#39;&#39;s Equations. Connexions.
John Greaton W?hlbier, ""Fundamental Equation" and "Transforming the Telegrapher&#39;&#39;s Equations". Modeling and Analysis of a Traveling Wave Under Multitone Excitation.
Transmission Line Pulse





自定义分类:
电缆电信工程
 
贡献者:
无限路由
Copyright © 1999-2024 C114 All Rights Reserved | 联系我们 | 沪ICP备12002291号-4